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Investigation of t h e  Kinetics of Crystal l izat ion of 

Molten Binary and T e r n a r y  Oxide Systems 

Summary and Quarterly Status  Report No. 4 - June 1, 1966 through A u g u s t  31, 1966 

Contract No. NASW-1301 

SUMMARY 

I n  t h e  first year of t h i s  contract  ninety-six mixtures of oxides were studied 
comprising eighty d i s t i n c t  compositions belonging t o  nine d i f fe ren t  glass systems 
not previously studied i n  connection with glass  fiber research. 
program emphasis has been placed on systems l i k e l y  t o  form complex three-dimensional 
s t ruc tures  with higher than usual values of e l a s t i c  moduli. 
co rd ie r i t e  glasses with nucleating and anti-nucleating additives, t h e  ben i to i t e  and 
bery l  systems t o  a very l imi t ed  extent, fluoborate glasses, Morey's tantalum oxide- 
titania-lanthanum borate  (no s i l i c a )  glasses, and "invert" glasses,  

Throughout t h e  

Systems s tudied included 

Concurrently with t h e  molten oxide composition research, equipment necessary 
t o  car ry  out an adequate characterization of such glasses was assembled, v i scos i t i e s  
at temperature were measured fo r  s ixteen glasses with a s t anda rd  model Brookfield 
viscometer f i t t e d  with elongated tungsten shaf t  and spindle  and cal ibrated at o r  
near ly  at  room temperature by use of N.B.S. standard v iscos i ty  o i l  "P" and a constant 
temperature water-bath. E lec t r i ca l  conductivity measurements were made from 860 C 
t o  1560 C using a tungsten conductivity c e l l  and selected c i rcu i t ry .  
ments of Young's modulus fo r  twenty-four glasses were made with sa t i s f ac to ry  precision 
using c i r c u i t r y  b u i l t  i n  t h i s  laboratory and these measurements were corroborated 
using t h e  conventional s t r e s s - s t r a in  curve, beam deflect ion technique. F iber izabi l i ty  
s tud ies  were made on twenty-seven of t h e  compositions and demonstrated t h e  ease with 
which most of t h e  compositions t e s t ed  could be used f o r  glass  f i b e r  production. 
F ina l ly  equipment was assembled t o  permit t h e  dynamic measurement of t h e  shear modulus 
f o r  t h e  various oxide melts studied s o  that  i n  conjunction with t h e  determination of 
Young's modulus, an estimate of t h e  anisotropy of glasses produced can be made. 

Sonic measure- 
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A t  t h i s  t i m e  t h e  best  glasses developed show consis tent ly  an average value 
f o r  Young's modulus above f i f t een  mill ion p s i  f o r  samples of bulk glass without any 
spec ia l  heat treatment. This i s  a higher value than t h a t  obtained 'by most p r io r  
contractors but is lower than t h e  eighteen t o  twenty-one mill ion p s i  postulated as 
a goal fo r  t h i s  program. That such a goal may be readi ly  obtainable by fur ther  
refinements of t h i s  program is  indicated by t h e  f ac t  tha t  occasional glass  samples 
were produced with values f o r  Young's modulus f o r  t he  bulk glass above seventeen 
and a half  mil l ion ps i ,  
ized as yet and t h i s  work w i l l  be continued i n  t h e  extended contractual period together 
with research on addi t ional  molten oxide mixtures with much stronger emphasis on the 
determination of t h e  kinet ics  

Not all. of t h e  glasses already prepared have been character- 

I 
of c rys ta l l iza t ion  of such mixtures. 

I 

ii 



INTRODUCTION 

This is  t h e  fourth quarter ly  status report as well  as t h e  f irst  summary report  
for  Contract NASW-1301 ent i t led ,  "Investigation of t he  Kinetics of Crys ta l l iza t ion  
of Molten Binary and Ternary Oxide Systems." The fourth quarter  of t h e  contract  
s t a r t ed  June 1, 1966 and extended t o  August 31, 1966 while t h e  period summarized 
s t a r t ed  September 1, 1965 and extended likewise t o  August 31, 1966. The primary 
object ive of t h i s  program is t o  gain a be t t e r  understanding of t h e  essent ia l s  of 
glass formation by measuring t h e  r a t e  at which c rys t a l l i za t ion  occurs and t h e  e f f ec t s  
of ant i -nucleat ing agents on t h e  observed c rys t a l l i za t ion  r a t e  f o r  systems which tend 
t o  form complex th ree  dimensional s t ructures .  
rate is  car r ied  out by continuously measuring the  v iscos i ty  and e l e c t r i c a l  conduc- 
t i v i t y  of t h e  molten system as a function of time and temperature with checks of  
surface tension at selected temperatures. 
therefore,  regarded as a r a t e  phenomenon where the  probabi l i ty  of such glass 
formation is  grea t ly  increased by employing cooling r a t e s  high enough t o  defeat t h e  
formation of t he  complex many-atom three-dimensional molecule. 
formation j u s t i f i e s  t he  consideration of oxide systems previously thought impractical  
and allows t h e  search f o r  systems which may y ie ld  high strength,  high modulus glass 
f ibe r s  t o  be carr ied out on an unusually broad basis.  

Determination of t h e  c rys t a l l i za t ion  

Glass formation i n  t h i s  research is, 

This view of glass 

PREPARATION OF GLASS SYSTEMS FOR PRELIMINARY EVALUATION 

Progress has been made i n  several  areas i n  t h e  twelve months of t h e  contract  
period. 
g lass  f i b e r  research together w i t h  t h e  published l i t e r a t u r e  i n  t h i s  f i e l d  appearing 
i n  t h e  last t e n  years have been reviewed. 
sponsored research contracts i n  t h i s  area (Refs. 1 through 39) has shown t h a t  although 
severa l  thousand glass compositions have been melted i n  an e f fo r t  t o  produce improved 
g lass  f i b e r s  no conflict ex i s t s  with t h e  direct ions of research planned by UACRL. 
Only one o the r  contractor, Refs. 14 through 17, has been concerned with s t ructured 
glasses  and t h i s  contractor has l a rge ly  concentrated on pat terning glasses a f t e r  
those  mater ia l s  exhibit ing an i n f i n i t e  l i nea r  chain s t ruc tu re  such as asbestos, 
t h e  pyroxenes, t h e  amphiboles, t h e  diopsides, and the  spodumenes. The hope of t h i s  
research was t h a t  by forming glass  f ibers  from glass melts which have l i n e a r l y  
or ien tab le  groupings of atoms, t h i s  or ientat ion would p e r s i s t  i n  t h e  molten s t a t e  
and would, therefore,  yield an oriented or anisotropic glass f i b e r  of high s t rength 
and modulus. 
motivating these  invest igators  as well  as t h e i r  choice of s t ruc tures  t o  be inves- 
t i g a t e d  (Refs. 14 through 17) a r e  d i s t i n c t  when compared t o  t h e  current investigation. 

Reports from programs previously sponsored by t h e  Government i n  t h e  area of 

Examination of t h e  many Government- 

It can be seen, accordingly, t h a t  t h e  theo re t i ca l  considerations 
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However, toward t h e  end of t he  first contractual period these  invest igators  did 
include t h e  co rd ie r i t e  glass f i e l d  composition as the  only ring-type s i l i c a t e  
s t ruc tu re  (glass composition C-7, pg. 45, Ref. 16) investigated and found it t o  be 
d i f f i c u l t l y  f iber izable  (pg. 46) but did not otherwise character ize  it because of 
time l imi ta t ions  (pg. 51). No mention is  made ( R e f s .  14 through 17) of t h e  other  
ring-type s i l i c a t e  s t ruc tures  studied i n  the current invest igat ion,  

I 

1 

I 

I 

1 Mg2A14Si5018--a three-dimensional r ing  former, has been melted successful ly  on 

I 

I 

The f i r s t  oxide system t o  be selected f o r  investigation, co rd ie r i t e  o r  

fourteen occasions (Table IA and footnote) i n  several  at.mospheres and i n  several. 
containers. Typically these  glasses are prepared i n  500 gram batches i n  high 
pu r i ty  (99.9%) alumina crucibles i n  air i n  t h e  super-kanthal hair-pin k i l n  shown 
i n  Fig. 1. Star t ing  mater ia ls  used a re  5 micron p a r t i c l e  s ize ,  high pu r i ty  s i l i c a ,  
high pu r i ty  alumina of 325 mesh, and laboratory reagent grade basic  magnesium 
carbonate. 
stone, and bubbles when held at a temperature of 1540 C o r  higher f o r  at l e a s t  two 
hours. Less commonly t h e  glass has been prepared i n  b e r y l l i a  crucibles i n  air and 
i n  t h e  k i l n  o r  i n  platinum o r  tungsten crucibles i n  pur i f ied  argon or  i n  vacuum i n  
t h e  tungsten res i s tance  f'urnace of Fig. 3. 
lower purity,  i .e. ,  99.3 t o  99.7% cannot be used nor can t h e  temperature of 1540 
t o  1560 C be exceeded even with t h e  highest p u r i t y  alumina crucible.  

1 
These materials yield a water-white o p t i c a l  grade glass  f r e e  of seed, 

~ 

1 

I Alumina crucibles of even s l i g h t l y  

I 

Equipment developed f o r  monitoring the e l e c t r i c a l  conductivity of t h e  molten 
oxide system as it cools has been used successfully t o  measure t h e  e l e c t r i c a l  
conductivity of t h e  vi t reous co rd ie r i t e  system from 1560 C t o  860 C as described 
i n  t h e  following sections.  
measurement of Young's modulus of t h e  bulk glass  has consis tent ly  yielded an 
e l a s t i c  modulus 503 higher than the  usual commercial glasses such as fused s i l i c a  
o r  C.G.W. 7740 as well  as yielding experimentally an e l a s t i c  modulus lO$ higher 
than t h a t  calculated using t h e  method of C. J. Ph i l l i p s  (Ref. 40). 
system seemed idea l  f o r  further experimentation and, therefore,  t h e  seventeen 
batches based on t h i s  system and l i s t e d  i n  Table I A  were prepared by adding 
nucleating and ant i -nucleat ing agents t o  the  system. Evaluation of these  new 
glasses  is s t i l l  i n  progress but t h e  preliminary data obtained on some of them 
is shown i n  Tables IV, V, V I ,  and X. The results continue t o  appear promising but 

Apparatus put together  t o  car ry  out t h e  dynamic 

1 
1 

This g lass  

I 
I obviously much fu r the r  research is  required f o r  a de f in i t e  conclusion. 

I Douglas (Ref. 46) recapi tu la tes  t h e  Zachariasen ru les  r e l a t i n g  t h e  probabi l i ty  
of a g lass  formation t o  the  s t ruc tu re  of t h e  c rys t a l l i ne  form of t h e  mater ia l  as: 

1. 
2. A m u s t  be s m a l l ;  

An oxygen atom is l inked t o  not more than two atoms, A; 
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3. 

4. 

The oxygen polyhedra share corners with each other, not edges o r  faces 
and form three-dimensional networks; 
A t  l e a s t  t h ree  corners i n  each oxygen polyhedra must be shared. 

A l a rge  number of t h e  glasses prepared i n  t h e  t h i r d  period of t h i s  report  
belong t o  novel glass systems developed by Stevels ( R e f .  46) and c u e d  by him 
"invert" glasses.  These glasses which may contain as l i t t l e  as 34 mol $ s i l i c a  
and whose mechanical propert ies  have never previously been studied as far as i s  
known controvert Zachariasen's rules 3 and 4. The composition of these  glasses 
is frequently indicated by a parameter Y designating t h e  average number of bridging 
ions per Si04 tetrahedron and calculated from t h e  expression 

200 ~ = 6 - -  
P 

where P = Mol $ Si@ 

so t h a t  when P = 33-1/3, Y = 0 and t h e  Si04 groups are isolated; when P = 40$, Y = 1 
and on t h e  average Si04 groups appear i n  pairs .  Properties of these glasses such as 
t h e  v iscos i ty  at a given temperature, t h e  v iscos i ty  act ivat ion energy, thermal 
expansivity, e l e c t r i c a l  deformation l o s s  go through extreme values when t h e  parameter 
Y passes through t h e  value of 2.0. There is every reason, therefore, t o  bel ieve t h a t  
mechanical propert ies  such as Young's modulus w i l l  show a similar "parabolic" curve 
when plot ted against  t h e  parameter Y climbing s teeply  as Y decreases from 2 t o  1 t o  
0, but no p r i o r  experimental data  i s  avai lable  t o  support t h i s  hypothesis. 

With these  considerations twenty-eight "invert" glasses were prepared i n  three 
se r i e s  (Taole IB)  . 
earths, si l ica-ti tania-mixed a lka l ine  earths, silica-zirconia-mixed a lka l ine  earths. 
While character izat ion of these  glasses i s  not yet complete, t h ree  members of each 
s e r i e s  have been evaluated without any evidence of increased modulus. 
s e r i e s  of "invert" glasses exist ,  however, and t h e  negative results today may merely 
ind ica te  t h a t  some other choice should be made. 

,The three  se r i e s  were respect ively silica-lead-mixed a lka l ine  

Many other  

A d i s t i n c t l y  d i f fe ren t  type of non-silicate, non-alkali glass  system not 
previously studied by glass  fiber research s c i e n t i s t s  i s  t h a t  b u i l t  on acid 
forming elements having r e l a t ive ly  high atomic weights. These glasses due t o  
Morey ( R e f .  43) and improved fo r  prac t ica l  manufacture by DePaoli ( R e f .  44) may be 
made, f o r  example, from a mixture of t i tania and tantalum oxide o r  from tantalum 
oxide, z i rconia  and lanthana. They typica l ly  include no a l k a l i  and l i t t l e  o r  no 
s i l i c a  and are, therefore,  too refractory t o  be melted i n  conventional glass- 
fiber apparatus. Published data  (Ref. 45) f o r  similar glasses supports t h e  idea 
t h a t  these  glasses have e l a s t i c  moduli higher than conventional glasses and lack  
of s i l i c a  lends hope t h a t  such systems may not su f fe r  atmospheric deter iorat ion 
t o  t h e  extent common with s i l i c a t e  based glasses. UACRL has melted these  glasses 
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on nine occasions but has not succeeded i n  producing glass  su i t ab le  f o r  evaluation. 
Further attempts w i l l  be made i n  t h e  next period. 
during t h e  f irst  year a re  shown i n  Table I C .  

The compositions investigated 

Table I D  summarizes t h e  other  types of molten oxide mixtures which have been 
studied during t h e  f irst  year. I n  general, these compositions have received much 
l e s s  emphasis than those mentioned above e i ther  because they have not yet  been 
melted successful ly  o r  because t h e i r  properties proved r e l a t i v e l y  uninteresting. 
They include a number of diverse  systems however. For example, one of t h e  types 
of glasses apparently not previously studied i n  connection with glass f i b e r  formation 
i s  t h e  fluoborate op t i ca l  glass system (Refs. 41, 42). 
o r  no a l k a l i  which according t o  Ph i l l i p s  calculations (Ref. 40) contributes t o  low 
e l a s t i c  modulus and very l i t t l e  or  no s i l i c a .  Attempts have been made t o  m e l t  t h e  
four compositions shown i n  Table ID4 but t o  date have f a i l ed  because of excessive 
foaming. 

These glasses contain l i t t l e  

.* A second r ing  s t ruc tu re  which should be equally as promising as t h a t  of co rd ie r i t e  
i s  beni to i te ,  BaTiSi309, whose s t ruc tu re  consists of r i n g  ions arranged i n  sheets 
with t h e i r  planes p a r a l l e l  with t h e  metal ions f a l l i n g  between t h e  sheets and binding 
together  t h e  r ings of t h e  d i f fe ren t  sheets. Although t h i s  system has now been 
experimented with on several  occasions, Table ID6, no glass has as yet been prepared 
because of t h e  speed of dev i t r i f i ca t ion  of t h e  system i n  platinum or tungsten 
crucibles  and because of i n a b i l i t y  t o  contain t h i s  molten oxide system i n  high 
p u r i t y  alumina, magnesia, o r  b e r y l l i a  crucibles. Further research w i l l  be attempted 
i n  t h e  next year. 

No attempt has yet been made t o  prepare glasses from oxide m i x t u r e s  of such 
proportions t h a t  only bery l  (emerald s t ructure)  a t h i r d  s i l i c a t e  r i n g  s t ruc tu re  
would r e s u l t .  
t h e  predominant c rys t a l l i ne  phase, Table ID6. 
o p t i c a l  grade materials but as yet  it has proven impossible t o  cool t h e  t h i r d  one 
f a s t  enough t o  prevent devi t r i f ica t ion .  The b e t t e r  of t h e  two glasses is about seven 
percent i n f e r i o r  compared t o  t h e  worst cord ier i te  glass and t h e  other  "beryl" glass 
is  even l e s s  outstanding s ince it i s  almost impossible t o  f iber ize .  However, research 
on t h i s  system w i l l  continue as soon as new vent i la t ion  ducts a r e  ins ta l led .  

However, t h ree  glasses have been melted where beryl  should cons t i tu te  
Two of these  glasses were obtained as 

Later  i n  t h e  report, it i s  shown tha t  calculations of Young's modulus from 
composition by t h e  methods of Ph i l l i p s  (Ref. 40) indicate  zirconia shouid be very 
e f f ec t ive  i n  increasing t h e  modulus. The six high zirconia  glasses of Table I D 1  
were consequently prepared but d i d  not show any outstanding values f o r  the  e l a s t i c  
modulus. 
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For purposes of ascer ta ining t h e  kinet ics  of c rys t a l l i za t ion  of molten oxide 
systems, systems with e i the r  two or  t h ree  oxides only (Table ID2 and ID3) would be 
much simpler t o  measure. However, no success has been obtained i n  attempting t o  
prepare glasses from these  systems and t h e  co rd ie r i t e  systems of Table IA continue t o  
be t h e  simplest systems consis tent ly  melted a t  t h i s  s tage  of t h e  invest igat ion.  

Final ly  a few miscellaneous oxide systems were prepared and shown i n  Table ID7 
but these have not yet been evaluated a t  t h i s  time. 

To summarize, therefore,  ninety-six melts of more than eighty d i s t i n c t  com- 
posi t ions have been prepared and as w i l l  be shown t h e  v i scos i t i e s  have been measured 
f o r  s ixteen of these systems, Young's modulus f o r  twenty-four, and g lass  forming 
and f i b e r i z a b i l i t y  s tud ies  carr ied out f o r  twenty-seven. Many f'urther character izat ion 
s tudies  a r e  necessary. 

FROCEDURES FOR CHARACTERIZING GLASS SYSTEMS INVESTIGATED 
AND THE RESULTS OBTAINED 

The kine t ics  of c rys t a l l i za t ion  of the glass  systems investigated under t h i s  
contract  are t o  be determined from continuous measurement of t h e  e l e c t r i c a l  r e s i s -  
t i v i t y  and v iscos i ty  of t h e  system together with spot checks at selected temperatures 
of t h e  surface tension of t h e  molten oxide systems. 
measurement of Young's modulus of t h e  bulk glass at  room temperature serve t o  help 
character ize  t h e  system studied. I n  addition wi th  t h e  recent ly  added equipment f o r  
measuring shear modulus and through it and Young's modulus, t h e  a b i l i t y  t o  determine 
Poisson's Ratio t h e  too l s  a r e  at hand t o  decide whether any of t he  glasses formed 
remember t h e i r  i n i t i a l  s t ruc tu re  t o  the  extent t h a t  they show anisotropy a f t e r  
melting. Finally, character izat ion of t h e  molten oxide systems is completed by 
determination of t h e i r  glass forming and f iber iza t ion  qua l i t i es .  

These measurements plus  t h e  

I n  t h i s  sec t ion  of t h e  report  t h e  equipment used f o r  e l e c t r i c a l  conductivity 
s tudies ,  f o r  v i scos i ty  measurments, f o r  the determination of Young's modulus and 
t h e  shear modulus, and for  studying f i b e r i z a b i l i t y  a r e  discussed i n  d e t a i l  and t h e  
r e s u l t s  obtained during t h e  f irst  year of the  con%ract with t h i s  equipment a r e  
tabulated.  

5 



E91037 3- 4 

Elec t r i ca l  Conductivity Measurements 

To study t h e  e l e c t r i c a l  conductivity of  t h e  molten oxides as a function of time 
and temperature, t h e  glasses were melted as described above and broken up and packed 
in to  the  tungsten crucible  shown i n  Fig. 2. 
t h e  conclusion of t h e  measurement, is made t o  serve as a conductivity c e l l  by intro-  
ducing a tungsten ba l l ,  one-quarter inch i n  diameter, on t h e  end of a tungsten rod 
in to  t h e  exact 
t h e  crucible  with 25 m i l  tantalum wire. 
tungsten res i s tance  furnace shown i n  Fig. 3 and heated u n t i l  t h e  glass i s  completely 
remelted. 
of t h e  molten oxide system is measured continuously through t h e  s o l i d i f i c a t i o n  
process as t h e  furnace cools. 
second in t e rva l s  t o  obtain t h e  required data connecting e l e c t r i c a l  conductivity w i t h  
c rys t a l l i za t ion  o r  lack  of c rys t a l l i za t ion  ra tes .  

This crucible, which i s  pictured at 

I center  of t h e  crucible and by ty ing  a tungsten rod t o  t h e  outside of 
I The whole assembly is then placed i n  t h e  

I Power t o  t h e  furnace i s  then turned of f  and the  e l e c t r i c a l  conductivity 

The temperature of t h e  crucible  is  measured at t h i r t y -  1 
~ 

The ac tua l  measurement of t he  e l e c t r i c a l  conductivity i s  car r ied  out by 
connecting external ly  t h e  UACRL "log ohmmeter" described schematically i n  Fig. 4 
t o  t h e  two leads from t h e  tungsten crucible conductivity c e l l .  These leads a r e  
brought out of t h e  furnace using vacuum-type e l e c t r i c a l  lead-ins 
of Fig. 4 is designed t o  measure resis tance from 10-i ohms t o  10% ohms and 
generates a d-c s igna l  voltage proportional t o  t h e  logarithm of t h e  resis tance.  
The s c a l e  f o r  t h i s  instrument i s  divided into s i x  ranges: 
10'5 t o  10+3 ohms, 10'3 t o  10+2 ohms, IO+* ohms t o  10 ohms, 10 ohms t o  1 ohm, and 
1 ohm t o  10-1 ohm. Over each range, t h e  amplitude of t h e  s igna l  applied t o  t h e  
unknown r e s i s t o r  and t h e  sampling r e s i s t o r  a r e  adjusted so t h a t  t h e  power dissipated 
i n  t h e  sample i s  l e s s  than 500 microwatts, and t h e  sample r e s i s t o r  i s  l e s s  than 6.5 
percent of t h e  res i s tance  being measured. 

The log  ohmmeter 

lo4 ohms t o  l O + 5  ohms, 

I n  each range position, a constant amplitude, 1000 cycle/sec, s inusoidal  
vol tage i s  applied t o  t h e  unknown and t h e  current through it measured by a sampling 
r e s i s t o r .  This signal is passed through a se r i e s  cf f i i t e r s  consis t ing of a band- 
pass f i l t e r  from 800 t o  2000 cycles/sec, a twin-tee notch f i l t e r  at 60 cycles/sec 
and a twin-tee notch f i l t e r  at 180 cycles/sec i n  cascade. 
remove t h e  i a r g e  amount of noise generated i n  the  sample by t h e  massive (1000's of 
amperes) 60 cycle  heater  current present i n  t h e  tungsten furnace. 
then l i n e a r l y  amplified by a guarded amplifier t o  a l e v e l  of 0.5 vol t s  p-p t o  
50 vo l t s  p-p and used t o  dr ive a power amplifier. 
quarded amplif ier  from t h e  detector.  The d-c voltage from t h e  detector  i s  then 
applied t o  t h e  logarithmic converter which puts out a d-c voltage proportional t o  
t h e  logarithm of t h e  input voltage. A unity gain operational amplifier following 
t h e  logarithmic converter provides the  low output impedance necessary t o  dr ive t h e  
s t r i p  char t  recorder. 

These f i l t e r s  e f fec t ive ly  

The s igna l  i s  

The power amplif ier  i so l a t e s  t h e  
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The e l e c t r i c a l  conductivity device has been used successful ly  f o r  several  of 
t h e  molten oxide systems. 
se lec t ing  those molten oxide systems for  fur ther  study as did d i r ec t  measurements 
of viscosi ty ,  e l a s t i c  moduli, and f iber izabi l i ty .  Attention has been concentrated 
on these l a t t e r  measurements, therefore,  throughout t h e  first year. It is  planned t o  
resume e l e c t r i c a l  conductivity s tudies  ear ly  t h i s  f a l l  at a time when they can be 
supplemented by d i r ec t  op t i ca l  microscopic observations. 

However, the  measurements did not seem as useful  i n  

Viscosity Measurements 

The device i n i t i a l l y  used t o  measure t h e  v iscos i ty  of t h e  molten oxide systems * at high temperature i s  t h e  Brookfield Synchro-ELectric Viscometer. 
of operation of  t h e  device is simple. 
t h e  f l u i d  under t e s t  through a beryllium-copper spring. 
spr ing is read on a d i a l .  The d i a l  reading w i t h  t h e  usual disc  is  multiplied by 
a simple constant t o  obtain t h e  r e su l t i ng  v iscos i ty  at t h e  par t icu lax  ro t a t iona l  
speed o r  when spec ia l  design spindles a r e  used, t h e  device is  cal ibrated through 
t h e  use of o i l s  of known viscosi ty .  
used t o  describe t h e  complete flow properties of t h e  mater ia l  at  hand. 

The pr inc ip le  
A cylinder or  d i sc  o r  spindle i s  ro ta ted  i n  

The def lect ion of  t h e  

Measurements made at d i f fe ren t  speeds are 

The Brookfield viscometer had never been used before at temperatures as high 
as those l i k e l y  t o  occur i n  t h i s  contract .  However, t h i s  merely meant t h a t  t h e  
device must be equipped with a long s h a f t  entering t h e  furnace and w i t h  a spindle  
of s u i t a b l e  high temperature material. Tungsten was selected as t h e  mater ia l  f o r  
both t h e  spindle  and sha f t  because of i ts  known compatibil i ty with a l l  t h e  molten 
oxide systems investigated t o  date, and Brookfield Engineering Laboratories then 
designed t h e  tungsten spindle  shown i n  Fig. 5. This tungsten spindle  and t h e  
Brookfield viscometer were ca l ibra ted  us ing  t h e  National Bureau of Standards 
staDdard v iscos i ty  o i l  "P" by placing an exact s i l i c a  r ep l i ca  of t h e  tungsten 
crucible  normally used i n  t h e  constant temperature bath shown i n  Fig. 6, f i l l i n g  
t h e  s i l i c a  crucible  with o i l  "P" and running t h e  tungsten spindle  i n  the  crucible  
i n  such a way as t o  exact ly  simulate high temperature operations as shown i n  Fig. 6. 
With t h i s  constant temperature bath, o i l  temperatures could be held constant t o  
within + 0.005 C i n  t h e  range from -5' t o  + lo7 C. With t h i s  bath, t h e  ca l ib ra t ion  
data  obtained for  t h e  tungsten spindle  is shown i n  Table I1 arrd graphically i n  
Fig. 7. 

The v i scos i ty  d a t a  f o r  N.B.S. standard o i l  "P" shown as t h e  fourth column of 
Table I1 w a s  obtained both by taking the  data furnished on t h e  c e r t i f i c a t e  accom- 
panying our shipment of o i l  "P", p lo t t i ng  it as shown by t h e  so l id  l i n e  of Fig. 8, 

* 
Trade-mark, Brookfield Engineering Laboratories, Inc., Stoughton, Massachusetts 
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taking t h e  data  furnished i n  the  a r t i c l e  published by Shar t s i s  and Spinner (Ref. 47) 
and p l o t t i n g  it as t h e  dot ted l i n e  of Fig. 8, and extrapolating t h e  so l id  l i n e  of 
Fig. 8 t o  give a su i t ab ly  displaced s imi la r iy  shaped curve. Experience gained i n  
measuring t h e  v iscos i ty  of h e d  s i l i c a  (Ref. 48) had shown t h i s  procedure t o  be 
trustworthy, 
i n  Table 111. 

The completed p lo t  of Fig. 8 i s  then used t o  furn ish  t h e  data tabulated 

The Brookfield viscometer and tungsten spindle  with i ts  elongated sha f t  were 
in s t a l l ed  on t h e  tungsten res i s tance  furnace as shown i n  Fig. 9. 
brought out of t h e  tungsten furnace through a high vacuum f i t t i n g .  Originally t h e  
spindle  is  at r e s t ,  t h e  ground glass previously melted i n  other  furnaces is  placed 
i n  t he  crucible, t h e  whole system is evacuated, flushed with pur i f ied  argon by 
loosening t h e  vacuum f i t t i n g  and allowing the  argon (at  a pos i t ive  pressure of 5 in .  
of water) t o  stream out, re-evacuated and r e f i l l e d  with pur i f ied  argon. The system 
i s  heated u n t i l  t h e  glass is  molten as judged by v isua l  kxahination and t h e  tungsten 
spindle  inser ted i n t o  t h e  melt and positioned at t h e  proper depth. The temperature 
of t h e  furnace is  adjusted t o  t h e  desired values and t h e  v iscos i ty  of t h e  selected 
experimental glass is  measured at t h e  various temperatures. 

The spindle  is 

Viscosity-temperature curves were measured f o r  s ixteen of t h e  experimental. molten 
oxide compositions. 
ll, 12, 13, and 14. 
l a t e d  in to  compositions by t h e  use of  Tables I, IA, IB, I C ,  and I D .  It is  immediately 
noticeable t h a t  f i f t e e n  of t h e  s ixteen experimental glasses have much s teeper  temper- 
a ture-v iscos i ty  curves than the  typ ica l  commercial "hard" glass p lo t ted  f o r  comparison 
i n  Fig. 10. One of t h e  experimental glasses, No. 52, shown i n  Fig. 13 has such a 
s teep  temperature-viscosity curve indeed tha t  successful commercial formation of 
f ibe r s  from it is  very doubtful. It is probable, however, t h a t  g lass  f ibe r s  can be 
successful ly  drawn from t h e  other fourteen experimental glasses with s teep  curves 
merely by more c r i t i c a l l y  controlled temperatures and t h e  subs t i t u t ion  of bushings 
with spec ia l ly  designed recessed apertures f o r  t h e  conventional bushings. Glass 
Batch 25 of Fig. 11 whose composition approximates t h a t  of bery l  is  t h e  only exper- 
imental composition measured t o  date w i t h  a r e l a t i v e l y  flat viscosity-temperature 
re la t ionship  and it can probably be made in to  f ibe r s  without any change i n  ex is t ing  
commercial equipment. 

The data obtained is  given i n  Table IV and p lo t ted  i n  Figs. 10, 
The glass batch numbers used i n  t h e  compilation can be t rans-  

The e f f e c t  of a progressive change i n  composition i s  r ead i ly  apparent i n  Fig. 12 
where data  is p lo t t ed  f o r  four "invert" glasses. 
amounts of t i t a n i a  and of t h e  potassium-calcium-strontium-barium f r ac t ion  progressively 
lower t h e  working temperature of t h e  glass. 

As shown by Table I B  addi t ional  
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I n  Table V, all of t h e  v iscos i ty  data obtained has been summarized by l i s t i n g  
those temperatures at  which a given glass  batch has a v iscos i ty  of approximately 300 
poises. if t h i s  data  i s  compared with t h e  d a t a  of t h e  next sec t ion  which l ists  
Young's modulus fo r  t h e  various glass batches by number, it w i l l  be apparent t h a t  
only t h e  high temperature glasses have shown r e l a t i v e l y  impressively high moduli 
t o  date. 

I n  t h e  previous sect ion t h e  procedure f o r  measuring t h e  e l e c t r i c a l  conductivity 
of t h e  molten oxides as a continuous function of temperature using a conductivity 
c e l l  and cen t r a l  "ball" e lectrode has been described i n  d e t a i l .  In  t h i s  sec t ion  
t h e  method of using t h e  viscometer together with tungsten shaf t  and spindle t o  
measure v iscos i ty  at various temperatures has l ikewise been described i n  d e t a i l .  
Since both systems use t h e  same tungsten crucibles with e i t h e r  a ro ta t ing  tungsten 
spindle  o r  tungsten b a l l  i n  t h e  exact center of t h e  crucible,  it strongly suggests 
t h e  p o s s i b i l i t y  t h a t  t h e  two measurements can be made simultaneously so as t o  obtain 
precise  correlat ion.  Numerous methods of making "low" fYiction e l e c t r i c a l  contact 
t o  t h e  ro t a t ing  viscometer spindle and shaft were invest igated including bal l  
bearings, brushes, and similar methods but all methods investigated were found t o  
be unsat isfactory because of non-reproducible e f f ec t s  on t h e  viscometer readings 
caused by drag. It does not appear possible, therefore,  t o  make t h e  two measure- 
ments simultaneously and we s h a l l  continue t o  carry them out separately.  

E la s t i c  Modulus Measurements 

Original Equipment f o r  Sonic Determination of Young's Modulus 

Apparatus was assembled f o r  measuring Young's modulus on s m a l l  bulk glass 
specimens i n  t h e  form of miniature rectangular beams using sonic techniques. A 
rectangular  or cy l indr ica l  beam i n  flexure vibrates  at a resonant frequency deter-  
mined by t h e  dimensions, densi ty  and Young's modulus of t h e  specimen. 
i n e r t i a  e f f ec t s  a r e  considered, t h e  formula fo r  rectangular specimens is  

I f  shear and 

where M = 

L =  
b =  
f =  
E =  

a r=  

m a s s  of sample i n  grams 
thickness of sample i n  inches 
length of sample i n  inches 
width of sample i n  centimeters 
resonant frequency of sample i n  cycles/sec 
Young's modulus f o r  sample i n  kilograms per square cm. 
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The equipment used t o  carry out t h e  measurement is  shown i n  Fig. 15. The 
specimen is  placed on two narrow supports fashioned from sponge rubber, a highly 
absorbing material .  A microphone supplied by a var iable  frequency o s c i l l a t o r  i s  
placed below t h e  center  of t h e  specimen. 
column of air  between i t s e l f  and t h e  specimen and t h i s  column of a i r  i n  t u r n  
drives t h e  specimen. 
t h i s  motion is  detected by a phonographic pickup car t r idge  which touches t h e  
specimen d i r e c t l y  over one of t h e  supports, 
pickup is then fed through an amplifier t o  one set of p l a t e s  of an oscil loscope. 
The other  s e t  of p la tes  of t h e  oscilloscope is supplied from the  o s c i l l a t o r  output 
so t h a t  at t h e  resonant frequency a Lissajous f igure  of maximum dimension i s  seen 
on t h e  oscil loscope because of t h e  90' phase s h i f t  occurring during detection. A t  
any frequency other  than t h e  resonant frequency oniy a simple horizontal  t r a c e  
forms on t h e  oscil loscope screen so  t h a t  resonance is  readi ly  detectable.  The 
c i r c u i t r y  shown i n  Fig. 1 5  when applied t o  s i x  d i f fe ren t  specimens of t h e  co rd ie r i t e  
based glass  y ie id  t h e  data  given below. 

This microphone excites t h e  shor t  

A t  a given c r i t i c a l  frequency t h e  specimen resonates and 

The signal from the  phonographic 

Dynamic Modulus fo r  Cordierite Based Glasses 

Young's Modulus 
Mass Dimens ions ~g/cm2 pounds/in.2 

a (in.)  b (cm) L (in.)  x 105 x 106 gms - - Specimen 

Batch 4 - #1 1.2242 0.125 0.320 1.796 10.35 14.8 
Batch 4 - #2 1,3698 0.1255 0.319 2.023 10.59 15 .1  
Batch 4 - #3 1.2508 0. i26 0.320 1.850 10.55 i5.0 

Batch 14 - #1 1.70083 0.1273 0.324 2.406 10.52 15.0 
Batch 14 - #k 1.5334 0.1275 0.324 2.173 10.55 15.0 
Batch 14 - #3 1.4098 0.1277 0,324 2.025 10.74 15.0 

The r e s u l t s  obtained a r e  in t e re s t ing  s ince using the  same apparatus values 
fo r  Corning G l a s s  Works glasses Code 7940 (f'used s i l i c a )  of 10.5 x 10 6 , Code 7740 
(Ppex)  of  9.3 x 106, and Code 7052 (alumina-silica) of 8.2 x LO 6 pounds per  square 

inch were obtained. The r e su l t s  obtained a re  a l so  highly concordant. 

Improved Apparatus fo r  t.he Sonic Determinatioz? of Young's Modulus 

The equipment used f o r  measurement of Young's modulus and described i n  t h e  
preceding sec t ion  was en t i r e ly  sa t i s fac tory  i f  glass  samples two inches o r  greater  
i n  length  were available.  But for  many glasses without spending undue lengths of 



time working out t h e  proper annealing cycle, t he  longest lengths avai lable  a r e  
only approximately one inch. 
samples it w a s  necessary t o  put together equipment capable of operating at much 
higher frequencies. 

To carry out s ign i f icant  measurements on such shor t  

This  i n  t u r n  meant purchasing much higher f i d e l i t y  components. 

Equipment selected f o r  improved measurements a r e  shown i n  Fig. 16. This 
system shown as a block diagram measures the resonant frequency of glass rods i n  
t h e  region between 1000 and 40,000 Hz. 
f o r  t h e  fundamental resonance by t h i n  f l ex ib l e  supports t h a t  have a resonant 
frequency below 1000 Hz. 
drives a column of air which i n  t u r n  excites t h e  sample. 
of t h e  end of t h e  bar is detected by the  transducer, a high qua l i ty  semiconductor 
phonograph car t r idge  and tone arm adjusted f o r  a t racking force of approximately 
0.1 gram. The d i f f e r e n t i a l  output from the transducer is amplified by a pre- 
amplifier which a l so  supplies exci ta t ion t o  t h e  transducer. 
preamplifier i s  passed through a high pass R-C f i l t e r  t o  remove low frequency 
noise due t o  building and support vibrations and is amplified i n  a guarded 
d i f f e r e n t i a l  amplifier. This amplified s ignal  is  displayed on a CRO and peak 
detected t o  dr ive  t h e  v e r t i c a l  axis of an x-y recorder. 

The sample is supported at t h e  nodal points 

A 30 w a t t  driver un i t  below t h e  center  of t he  sample 
The v e r t i c a l  displacement 

The output of t h e  

Primary exci ta t ion is  supplied t o  t he  dr iver  uni t  by a var iable  frequency 
audio o s c i l l a t o r  through an audio amplifier. 
t o  t h e  frequency control  on t h e  osc i l l a to r  supplies a d-c voltage t o  t h e  horizontal  
axis of t h e  x-y recorder proportional t o  the logarithm of t h e  driving frequency. 

A potentiometer mechanically coupled 

With t h e  above system, any spurious resonances due t o  t h e  dr iver  uni t ,  trans- 
ducer o r  supporting s t ruc tures  w i l l  appear t h e  same f o r  d i f f e ren t  samples and can 
thus be eliminated from t h e  data  by t h e  operator. 
smaller than those from extraneous sources can be eas i ly  resolved by comparative 
recordings for d i f f e ren t  sample lengths. 

Resonances with amplitudes 

The over -a l l  system has a frequency response from 3000 t o  40,000 Hz with an 
amplitude var ia t ion  of 3db. 

The improved equipment has proven much simpler t o  use than i ts  immediate 
predecessor. More than two-thirds of t h e  r e s u l t s  shown i n  Table V I  were obtained 
with t h i s  equipment. 
system can cons is ten t ly  yield a glass  w i t h  a value f o r  Young's modulus i n  excess 
of f i f i e e n  mi l l ion  p s i  without any par t icu lar  annealing cycle. It is, of course, 
far too  e a r l y  t o  say whether t h i s  value can be f'urther improved, 

These r e s u l t s  show t h a t  research on the  co rd ie r i t e  based glass 

The degree of consistency obtainable i n  sonic determinations of Young's modulus 
with e i t h e r  t h e  older  o r  improved equipment i s  shown i n  Table VII. 
var i a t ion  present is due t o  var ia t ion  i n  the machined dimensions of t h e  s m a l l  samples 

All of t h e  
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used. These samples a r e  typ ica l ly  1.800 inches long, 0.1240 inches wide, and 0.1240 
inches high. The commercial l ens  maker who cuts  and grinds these  samples f o r  us, of 
course, has d i f f i c u l t y  i n  holding these  dimensions t o  tolerances b e t t e r  than + 0.003 
inches pa r t i cu la r ly  because these glasses are  harder than t h e  usual op t i ca l  &asses. 

The sonic moduli measurements made using glass #1, a cordier i te-base glass and 
similar t o  batches 4 and 14, were checked using measured def lect ions versus measured 

The comparative results of t h e  two methods a r e  shown i n  Table VIII. The values ob- 
ta ined by t h e  sonic method a r e  believed t o  be more nearly correct s ince  t h i s  method 
gives t h e  s lope of t h e  i n i t i a l  pa r t  of the s t r e s s - s t r a in  curve and thus corresponds 
t o  a value based on microstresses, while the t ransverse rupture method e s sen t i a l ly  
yields  a value f o r  only v e r y l a r g e  s t r a i n s  and so corresponds t o  an average value 
f o r  a s t r e s s - s t r a i n  curve which is  not r ea l ly  a s t r a igh t  l i n e  when closely examined. 
Then too, t h e  sonic method applied t o  commonly avai lable  commercial. glasses (as 
mentioned i n  t h e  f irst  quar te r ly  report)  gave values of Young's modulus i n  complete 
agreement with t h e  published values. The values obtained by t h e  transverse- 
def lect ion method may d s o  be affected by t h e  f a c t  t h a t  t h e  glass  samples had been 
stored two months i n  laboratory atmosphere before these measurements were made, 
while t h e  sonic  moduli values were measured on f resh ly  ground samples. The impor- 
tance of such aging can only be evaluated through addi t ional  experimentation. 

, loads i n  three-point loading apparatus equipped with an unusually sens i t i ve  load c e l l .  

1 

Shear Modulus Determined by Velocity of Sound Measurements 

The experimental program at t h i s  laboratory s t resses  t h e  r a t e  concept of 
glass formation from molten oxide solutions of t h e  proper proportions t o  yield 
complex three-dimensional r i ng  s t ructures  i f  t h e  glasses from t h e  melt a r e  
allowed t o  devi t r i fy .  It is possible, therefore, t h a t  t h e  glasses formed from 
such melts may show anisotropy. Accordingly, UACRL has s e t  up equTpment for  
measuring t h e  shear modulus of t he  glasses. This determination i n  conjunction 
with the  sonic  determination of Young's modulus w i l l  a l so  give values f o r  Poisson's 
r a t i o  so t h a t  any anisotropy i n  the  buik glass specimen w i l l  be apparent. 

The equipment assembled f o r  t h e  determination of shear modulus is  shown i n  
Fig. 17. As indicated, t h e  c i r c u i t r y  measures t h e  veloci ty  of sound i n  t h e  sample 
by dr iv ing  t h e  t ransmit t ing piezoelectr ic  c r y s t a l  with a shor t  burs t  of radio- 
frequency vibrat ions and measuring t h e  t ransi t  time of t h e  pulse i n  t h e  rod. 
t ransmit ted pulse i s  received by a second piezoelectr ic  c r y s t a l  acous t ica l ly  coupled 
t o  t h e  far end of t h e  sample. 

The 

The pulsed o s c i l l a t o r  selected emits a gated burst  of high-frequenc 
t o  60 x 10 

e l e c t r i -  
cycles/ 6 t 

C a l  o s c i l l a t i o n s  i n  t h e  range of 1 .4  Mhz t o  60 Mhz (1.4 x 10 
sec)  , This voltage drives the  transmitt ing piezoelectr ic  c rys t a l  i n  t he  compressional. 
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mode. 
coupled through o i l  o r  cement t o  t h e  glass  specimen and so when it vibrates  it 
causes the  glass  rod t o  l ikewise vibrate  i n  t h e  compressional mode. 

This c rys t a l  is a wafer 1/8 in. i n  diameter and 1/64 in .  th ick  acoust ical ly  

The receiving c r y s t a l  is iden t i ca l  t o  t h e  t ransmit t ing c rys t a l  and s imi l a r ly  
bonded t o  the  rod s o  that it is mechanically excited by t h e  compressional waves 
t rave l ing  down t h e  glass bar. 
pulse  i s  then measured on a dual beam oscilloscope and/or an E-put meter. The ~ 

veloci ty  of t h i s  sound wave and t h e  resu l t ing  value f o r  t h e  shear modulus of t h e  
specimen a r e  then calculated.  

The time delay between t h e  transmitted and received 

The first measurements on experimental glasses  with t h i s  new device a r e  
scheduled fo r  t h e  ear ly  pa r t  of t h e  extended contract .  The p o s s i b i l i t y  of s t ruc tu re  
i n  glass f i b e r s  as a t t e s t ed  by attendant anisotropy has a l s o  been considered by 
Kroenke (Refs. 16, 17) f o r  those compositions which might give r i s e  t o  long l i n e a r  
chains such as amphiboles, pyroxenes, diopsides, and spodumenes. He reports  t h a t  
such anisotropy was indeed found i n  the  spodumene based glasses (Ref, 17) but no 
evidence was found f o r  glasses  w i t h  values of e l a s t i c  moduli above 13.2 x 10 6 p s i  

fo r  these glasses. 

Calculation of Young's Modulus of E la s t i c i ty  from Composition of Simple 
and Complex S i l i c a t e  Glasses 

- I n  a pioneering paper en t i t l ed  "Calculation of Young's Modulus of E l a s t i c i t y  
from Composition of Simple and Complex S i l i c a t e  Glasses" (Ref. 40), C. J. Ph i l l i p s  
describes a method fo r  calculat ing Young's modulus of e l a s t i c i t y  f o r  some 44 glasses 
by expressing t h e  content of each oxide i n  mole percent and multiplying it by a 
coef f ic ien t  pecul iar  t o  t h a t  oxide. Unfortucnately, he gives coef f ic ien ts  f o r  only 
ce r t a in  oxides l i k e l y  t o  be present i n  glass, namely, Si@, Na20, Li20, G O ,  BO3, 
Al2O3, CaO, a 0 ,  PbO, BELO, ZnO, and BeO. It is  hoped t h a t  t h e  work of t h i s  contract  
at UACRL can be used t o  obtain similar values fo r  Zr02, SrO, Ti02, Ta2O5, La203 and 
o ther  missing oxides. 
mind, an e r ro r  w a s  discovered i n  t h e  coeff ic ient  assigned by Fh i i l i p s  t o  BeO. This 
error ,  which has been ca l led  t o  Ph i l l i p s '  a t ten t ion  and w i t h  which he agrees, 
emphasizes t h e  contribution which be ry l l i a  is l i k e l y  t o  make t o  high modulus g l a s s  
research. 
out and what t h e  correct  value of t h e  coeff ic ient  f o r  b e r y l l i a  should be, Tables 

I n  checking through t h e  paper with our fd ture  research i n  

W e  submit two examples t o  show how t h i s  type of calculat ion is  carr ied 

IXA, LXB. 

This value f o r  t h e  b e r y l i i a  coefficient of 19.0 kiiobars/mole $ replaces t h e  
erroneous value of 24.2 kilcbars/mole $ which r e s u l t s  wher, glass  73 of t h e  
P h i l l i p s  paper i s  cor rec t ly  calculated (Phi l l ips  through a juxtaposit ion of t h e  
composition had inadvertent ly  obtained the correct  value of t h e  b e r y l l i a  coef f ic ien t ) .  
This value of  t he  b e r y l l i a  coeff ic ient  would ind ica te  t h a t  t h e  attainment of s i l i c a -  



base giasses with a modulus greater  than 30 x 10 6 p s i  i s  probably impossible. 
calculations,  however, do not hold fo r  t h e  non-sil icate base glasses such as 
Morey's glasses and t h e  borofluorate glasses of t h i s  report  nor can they reasonably 
be expected t o  hold f o r  Stevels "invert" glasses. 

The 

An extension of t h e  Phi l l ips '  method of calculation t o  Loewenstein's glass 
( R e f .  51) shows t h a t  zirconia has as high a molal Young's modulus fac tor  as 
beryl l ia ,  a f a c t  not noted p r io r  t o  t h i s  report, cf .  Table IXC. 

This value f o r  zirconia i s  very exciting. Consequently glasses 26, 27, 28, 29, 
30, and 31 whose compositions a re  given i n  Table ID1 were prepared i n  t h i s  laboratory. 
But these high zirconia content glasses fa i l  t o  substant ia te  t h e  calculated contri-  
bution of zirconia t o  Young's modulus as can be seen from Table V I  where t h e  exper- 
imentally determined values of Young's modulus f o r  glasses 26, 27, and 29 a re  l i s t e d .  
This failure, however, may be so l e ly  due t o  t h e  high a l k a l i  content of glasses 26 
and 27 i n  contrast  t o  Loewenstein's glass Z$ which has no a l k a l i  present. 
research i n  t h i s  area is  planned. 

Further 

Evaluation of G l a s s  Forming Characterist ics and Fiber izabi l i ty  

The oxide materials previously melted i n  t h e  k i l n  using the  procedures described 
e a r l i e r  i n  t h i s  report furnish t h e  s t a r t i ng  mater ia l  used i n  t h i s  determination. 
A s  a r e s u l t  of t h e i r  previous heat treatment they a re  e i the r  f u l l y  melted glasses, 
p a r t i a l l y  melted glasses, o r  materials tha t  appear l i k e  cinders or  clinkers or  
re f rac tor ies .  A suf f ic ien t  amount of t h i s  material is selected t o  f i l l  a f i f t e e n  
m i l l i l i t e r  platinum crucible. 
s i z e  and placed i n  t h e  platinum crucible. 
t h e  motor-driven platform of the  super-kanthal hairpin furnace shown i n  Fig. 18. 
The platform is  then raised rapidly u n t i l  t he  crucible is  i n  t he  center of t h e  
furnace, which is already at t h e  desired temperature. The crucible remains i n  t h e  
furnace chamber f o r  one hour and then i s  rapidly lowered. Immediately upon i t s  
emergence from the  furnace the  molten contents of t he  crucible is poured in to  a 
s m a l l  graphi te  mold which may a l so  be seen i n  Fig. 18. 
and as it reaches t h e  proper consistency an attempt i s  made t o  p u l l  a f ibe r  from it 
by hand. The consequences of t h i s  set, of experiments are found i n  Table X f o r  t h e  
twenty-seven glasses studied t.0 date  with t h i s  equipment. 

It is  then ground o r  crushed t o  approximately 10 mesh 
The platinum crucible i s  then placed on 

The glass starts t o  s o l i d i f y  



CONCLUSIONS 

1. Ehphasis on research on molten binary and te rnary  oxide mixtures such as 
co rd ie r i t e  which form complex three-dimensional molecules appears t o  form a 
promising approach t o  t h e  problem of producing new high modulus glass f i b e r s  
s ince  bulk glass samples averaging greater  than f i f t e e n  mil l ion p s i  have 
resul ted i n  t h e  first year of  research from t h i s  method of a t tack.  Such 
research should be continued on a broader bas i s  i n  t h e  next period of t h i s  
contract .  

2. The study of t h e  var ia t ion  of  e l e c t r i c a l  conductivity with temperature employed 
i n  determining the  k ine t ics  of c rys t a l l i za t ion  of molten oxides should be 
supplemented by concurrent op t i ca l  microscopic s tudies  t o  increase i ts  usefulness. 

3. Further research on both "invert" glass systems and Morey's non-sil ica glass 
systems should be carr ied out s ince the first year 's  research on these systems 
did not completely answer t h e  question of  t h e i r  usefulness fo r  t h e  production 
of  high modulus glass f ibers .  

4. Viscosity measurements as a function of temperature, e l a s t i c  moduli deter-  
minations, and f i b e r i z a b i l i t y  studies are su f f i c i en t  t o  characterize new 
glass  compositions found i n  t h i s  program. 

PliXSONNEL ACTIVE ON PROGRAM 

Personnel ac t ive  on t h e  program throughout t h e  year have been J. F. Bacon, 
p r inc ipa l  invest igator ,  and Norman J. Chamberlain, senior  experimental technician.  
They were aided repeatedly throughout t h e  year by Louis J. Tempel, Jr. of t h e  
UACFG Instrumentation Section. I n  t he  second quarter, Charles E. Shulze of t h e  
Materials Sciences Section designed, constructed, and operated the  equipment 
used t o  obtain Young's modulus by t h e  transverse rupture technique. 
quarter,  Herbert G. A a s  of t h e  UACRL Instnunentation Section designed t h e  c i r c u i t r y  
t o  be used f o r  shear modulus measurements. I n  t h e  fourth period John E. Cox of 
t h e  Materials Sciences Section and his  technician, C a r l  Ravazzoli, carr ied out t h e  
f i b e r i z a b i l i t y  s tudies .  Finally, t he  tantalum flxnace and associated f i b e r  pu l l ing  
equipment mentioned i n  our fu ture  plans were designed and b u i l t  and loaned t o  us 
by John E. Cox and Richard D. Ve l t r i  of the Materials Sciences Section. Liaison 
throughout t h e  program has been carr ied out by Peter A. Stranges of t h e  UACRL 
Washington Office. 

I n  t h e  t h i r d  
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TABLE I A  

Preparation of Cordierite-Type Glasses with Nucleating 
and Anti-Nucleating Addi t I  1 ons 

Ingredient Batch No. (amounts of components i n  grams) 

S i l i c a  
Alumina 120.0 90.0 90.0 90.0 90.0 90.0 

Beryllium Carbonat e --- 135.0 --- --- --- --- 
Zirconium Carbonate --- --- 75.0 --- --- --- 
Lithium Carbonate --- --- --- 123.5 --- --- 

37.5 --- Zinc Oxide --- --- --- --- 
Cerium Oxalate --- --- --- --- --- 

Eagnesim Carbonate (basic) 180.0 135.0 135.0 135.0 135.0 135.0 

135.0 

62 
2 58.0 
125.0 

(basic ) 192.0 
54.0 

63 
2 58.0 
125.0 
192.0 

64 
2 58.0 
125.0 
192.0 

62 
258.0 
125.0 
192.0 

66 

125.0 
192.0 

2 5 T O  
5I 

258.0 
125.0 
192.0 

68 
2 5KO 
150.0 
192.0 

62 
283.0 
125.0 
192.0 

S i l i c a  
Alumina 
Magne slum Carb onat e 
Cerium Oxalate 
Lanthanum Oxalate 
Y t t r i u m  Oxalate 
Samarium Oxalate 
Zirconium Carbonate 
Tantalum Oxide 

--- -I- --- -e- --- --- 
-e- --- 

--- 
25.0 

7 0 7 1 z 7 3 7 4  
S i l i c a  258.0 25zo 250.0 250.0 258.0 
Alumina 100.0 125.0 112.5 62.5 75.0 
Magnesium h rbona te  (basic)  192.0 261.5 157.0 157.0 192.0 
Y t t r i u m  Oxala+,e 134.0 --- --- 134.0 191.0 
Cerium Oxalate --- --- 135.0 135.0 --- 
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TABLE IB 

Preparation of "Invert" Glasses 

Batch No. (amounts of  components i n  grams) 
46 - 45 - 44A - 44 - 42 - 43 - 41 - Ingredient 

S i l i c a  176.0 
Lead Carbonat e 57.6 
Titanium Ni t ra te  --- 
Ruti le  --- 
Titanium Dioxide --- 
Zirconium Carbonat e - - - 
Potas s ium Corbonat e 75.4 

Strontium Carbonat e 62.7 
Calcium Carbonate 78.5 

Bar ium Carbonate 57.2 

176.0 
57.6 
92.0 
--- 
--- 
--- 
34.99 
42.82 
34.2 
31.2 

176.0 
57.6 
18.4 
--- 
--- 
--i 

75.5 
78.5 
62.7 
57.2 

176.0 
--- 
--- 
48.0 
--- 
--- 
75.5 
78.5 
62.7 
57.2 

176.0 
--- 
--- 
24.0 
24.0 

75.5 
78.5 
62.7 
57.2 

--- 

S i l i c a  
Lead Carbonat e 
Titanium Ni t r a t e  
Rut i le  
Titanium Dioxide 
Zirconium Carbonat e 
Pot ass ium Carbonat e 
Calcium Carbonat e 
Strontium Carbonat e 
Barium Carbonate 

- 46B - 47 - 47B - 48 - 4 8 ~  - 49 - 49B 

250.0 
c-- 

--- 
50.0 
--- 
--- 
85.8 

65.0 

88.8 
71.25 

S i l i c a  168.0 19.0 139.75 190.0 130.0 175.0 125.65 
Rut i le  --- 103.3 --- 103.3 --- 65.0 --- 
Titanium Dioxide 54.55 --- 103.30 --- 76.75 --- 62.0 

Calc i u m  Carbonat, e 68.2 92.2 63.3 92.2 71.3 115.8 77.75 
Potassium Carbonate 110.3 88.5 102.5 88.5 116.3 111.4 125.3 

Strontium Carbonate 100.7 73.6 93.7 73.6 106.3 92.6 ~ 4 . 6  
Ihrium Carbonat e 136.2 67.2 126.3 67.2 143.5 84.5 149.0 



Ingredient 

S i l i ca  
Ruti le  
Titanium Dioxide 
Zirconia 
Pot ass ium Carbonat e 
Calcium Carbonate 
Strontium Carbonat e 
Barium Carbonate 

TAELE I B  ( Contd. ) 

Batch No. (amounts o f  components i n  grams) 
54 54A - 543 - 55 55B - 55A - - - 

170.0 175.0 123.2 170.0 175.0 110.8 
110.0 --- --- --- --- --- 
--- 105.0 105.9 --- --- --- 
--- --- --- 110.0 117.81 165.0 

98.2 98.2 66.6 98.2 98.2 59.4 
78.4 78.4 97.7 78.4 78.4 87.8 

94.3 $03 107.2 94.3 94.3 96.4 

71.5 71.5 132.2 71.5 71.5 118.5 
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TABLE I C  

Non-Silica Containing Glasses of Morey-DePaolis Type 

Ingredient 

Zirconia 
Titanium Dioxide 
Tantalum Oxide 
S i l i c a  
Zirconium Carbonat e 
Lanthanum Oxalat e 
Thoria 
Fused Boric Acid 

Lanthanum Oxalate 
Tantalum Oxide 
Thorium Dioxide 
Boric Acid 
Strontium Carbonat e 
Barium Carbonat e 
Tungsten Oxide 
S i l i c a  
Alumina 
Titanium Dioxide 
Zirconium Dioxide 
Lithium Carbonat e 

No, (amounts of components i n  grams) 
- 9 

--- 
--- 
50.0 
50.0 
--- 
--- 
--- 
--- 

60 

434.0 
55.0 
30.0 

195.5 
25.0 
10.0 
u . 7  
12.5 
17.5 
15.0 
50.0 
2.5 

- 61 

293.0 
80.0 
80.0 

212.0 
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TABLE I D  

Preparation of Various Glasses Including Those with High-Zirconia 

Two- Component Systems and Miscellaneous 
Content, Beryl o r  Benitoite o r  Fluoborate Base, 

1. Hi& Zirconia Content Glasses 

Ingredient 

S i l i c a  
Sodium Carbonate 
Alumina 
Rut i le  
Calcium Carbonate 
Potassium Carbonat e 
Anhydri Boric Oxide 
Beryllium Carbonat e 
Cerium Oxide 
Zirconium Carbonate 

2. Two Oxide Systems 

ingredient 

Alumina 
Zirconium Carbonate 
Calcium Carbonat e 
S i l i c a  
Titanium Oxalate 

Batch No. (amounts of components i n  grams) 

26,30 27,31 - 28 - 29 

360.5 310.0 138.0 177.5 
144.4 119.7 --- --- 

4.3 4.0 142.0 145.5 
1.00 --- --- --- 

--- 4.36 68.7 47.3 
--- 14.6 --- --- 

--- 51.0 47.5 

58.00 117.8 75.2 77.4 

--- 
75.90 --- --- --- 

--- --- 72.0 - -e  
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E910 37 3 - 4 

TABLE I D  (Contd.) 

3. Three Oxide System 

Batch No. (amounts of components i n  grams) 
Ingredient - 75 - 76 - 77 

S i l i c a  310.0 310.0 310.0 
Sodium Carbonat e 1530 9 111.11 68.4 
Calcium Carbonat e 178.4 223.0 267.6 

4. Fluoborate and Lanthanum Borate Glasses 

Batch No. (amounts of components i n  grams) 
Ingredient - 32 - 33 - 34 - 35 

Calcium Fluoride 240.0 30.0 180.0 20.0 

Boric Anhydride 260.0 120.0 --- --- 
Boric Acid (H3BO3) --- --- 346.5 142.0 

Lanthanum Oxalate --- 409.0 --- 217.0 
Zirconia --- 50.0 --- 25.0 

5. Glasses Prepared for Comparative Measurements from Published Data 

Batch No. (amounts of components i n  grams) 
83 - a2 - Ingredient 

S i l i c a  
Alumina 
Zirconium Carbonat e 
Magnesium Carbonat e (basic) 
Sodium Carbonat e 
Calcium Carbonat e 
Berylli-dm Carbonat e 
T i t a n i a  (not Rutile) 
Lithium Carbonate 
C e r i u m  Oxalate 

235.0 
180.0 

log .  83 
22.44 

4.28 

255.0 
--- 
11.22 
104.14 

115.96 
121.0 
40.0 
37.1 
32.25 
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TABLE I D  ( Contd. ) 

6. Beryl and Beni to i t  e Based Systems, (Be3A12Si6018 and BaTiSi30 9 
Batch No. (amounts of components i n  grams) 

25 3,5,12 - Ingredient 

S i l i c a  250.0 88.5 
Alumina 175.0 --- 
Magnesium Carbonat e (bas i c )  80.0 --- 
Beryllium Carbonat e 80.0 --- 

355.0 Barium Carbonate --- 
Titanium Dioxide --- 141.5 

7. Miscellaneous Oxide Systems 

h t c h  No. (amounts of components i n  grams) 
81 - 80 - - 56 - 79 Ingredient 

S i l i c a  
Li th ium Carbonate 
Phosphorus Pentoxide 
Zinc Carbonat e 
Boric Acid 
Calcium Carbonat e 
Y t t r i u m  Oxalate 
Magnesium Carbonate (basic) 
Sodium Carbonat e 
Ferr ic  Oxide 

382.5 
185.5 

5.0 
57.75 

155.0 
--- 

--- 
106.5 
428.0 
120.5 

20.4 
--- 

261.6 
315.6 
31.4 

160.0 
--- 

--- 
321.0 
201.0 
10.45 
17.1 
35.0 
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TABT;E I1 

Calibrat ion of Large Tungsten Spindle i n  N.B.S. Standard Oil "P" 

V is  comet er Reading Temp. Viscosity 
Speed( rFm) (arb.  div. ) (OC) oil P (poises)  

20 .o 
20.0 
20.0 

10.0 
10.0 
10.0 
10.0 

2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 

74.0 
79.5 
95.7 

37 02 
39.8 
48.1 
73 00 

18.3 
19.6 

36.5 

60.5 
66.0 
81.1 
82.7 

24.0 

52.0 

9-4 
9.75 
12.1 
18.4 
25.5 
30.4 
36.5 
41.4 
41.0 
48.7 
65.2 
81.8 
83.6 

51 .O 

44 .O 
47.5 

51 .O 
47.5 
44.0 
41 .O 

51 .O 

44.0 
41 .O 
37.9 
35.0 
32.0 
29.0 

47.5 

28.0 

51 .O 

44.1 
41 .O 
38.0 
35.0 
32.0 
29 .o 
28.0 
27.0 
24 .O 
21 .o 
18.0 

47.5 

80 
111 
14 5 

80 
111 
145 
175 

80 
111 
14 5 
1-75 
214 
275 
362 
450 
510 

80 
111 
145 
175 
214 
275 
362 
450 
510 
555 
780 
970 
1290 
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TAELE I1 (Contd.) 

1.0 
1 .O 
1 .o 
1 .c) 

1..0 
1 .o 
1.0 
1.0 
1.0 
1.0 
1 .o 
1 .o 
1.0 
1.0 
1.0 

0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5' 
0.5 
0.5 

Reading Temp. 
(arb. d i v . )  (OC) 

4.05 
4.Ir5 
4.9 
7.5 

10.1 
12.4 
14.2 
16.4 
16.5 
19.5 
26.1 
32.5 
31.6 
66.3 
88.3 

2.85 
4 .2 
5.6 
6.6 
7.7 
8.8 
8.8 

10.0 
13.5 
16.8 
16.8 
35.5 
46 . 75 
51.2 
57.5 

57. .O 
47.5 
4-11. .9 
I C 1  .o 
37.9 
35.0 
32.0 
29 .o 
28.0 
27.0 
24 .O 
21 .o 
18.0 
14.8 
12.0 

44.1 
41 .O 
37.9 
35.0 
32.0 
29.0 
28.0 
27.0 
211. .O 
21 .o 
18.0 
14.3 
12.0 
9 .o 
5.35 

Viscosity 
013. F (poises)  

80 
1.11 
Ill 5 
175 
2111. 
275 
362 
450 
510 
555 
780 
970 
1290 
1790 
2380 

14 5 
175 
214 
2'75 
362 
4 50 
510 
555 
780 
970 

1299 
1790 
23% 

off graph used 
off graph used 



TABLE I11 

Extrapolated and Cer t i f ica te  Values of Viscosity f o r  
N.B.S. Viscosity Standard O i l  "P" 

Temperature OC Visc0sj.t;- (poises)  Temperature OC Viscosity (poises)  

30.0 417.8 c e r t i f .  33.36 329 (Ref. 8) 

40.0 183.3 c e r t i f .  29 . 50 448 (Ref. 8) 

50.0 86.6 c e r t i f .  26.98 569 ( R e f .  8) 

11.98 2,439 (Ref. 8) 

19 .lo 1,193 (Ref. 8) 

11.81 2,499 (Ref. 8) 
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Experimental Determination of Viscosity Individual Runs 

Glass Batch No. 1 
Temp. Viscosity 
- OC (poises) 

1281 2150 
1305 335 
1313 184 
1333 160 
1348 87 

Glass Batch No. 24 
Temp. V i s  cos it y 
- OC (poises) 

1350 
136 5 
1385 
1407 
1420 
14 50 
1485 

1520 
1540 
1570 
1590 

1500 

1600 
1285 
10 50 
685 
4 50 
275 
200 
175 
150 
130 

95 
80 

G l a s s  Batch No. 25 Glass Batch No. 30 

OC (poises) OC (poises) 
V i s  cos i t y  Temp. Viscosity Temp. 

- - 
1478 200 1247 1310 
1488 140 1267 954 
1498 115 1292 765 
1509 80 1305 5 57 

1327 365 
1342 281 
1377 193 
1392 186 

Glass Batch No. 31 

OC (poises) 
Viscosity Temp. 

- 
1358 
1378 
140 5 
1420 
1445 

1483 
1455 

1492 
1508 
1532 
1558 

32 

1043 
947 
748 
475 
373 
270 
213 
1-75 
170 
147 

57 

G l a s s  Batch No, 41 
Temp. V i s  cos i t y  

C (poises) 0 - 
905 880 
925 320 
93 5 210 
959 160 
969 160 
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TABLE IV (Contd. ) 

Glass Batch No. k3 
Temp. V i s  cos i t y  
OC (poises ) - 
983 2500 

1030 965 
1060 300 
1080 190 
1103 16 5 
1115 135 

1005 142 5 

Glass Batch No. 48 
Temp. Viscosity 
OC (poises) - 
1038 1590 
1062. 920 
1090 535 
1110 280 
1137 210 
1140 180 

Glass Batch No. 45 
Tenrp. Viscosity 
OC (pois es ) - 
1077 1750 
ll12 600 
1145 300 
1160 175 

Glass Batch No. 49 
Temp. Viscosity 
- OC (poises) 

1011 
102 5 
1042 
10 50 
1057 
1087 
1110 
1128 

2500 
1630 
1080 
930 
725 
345 
200 
170 

Glass Batch No. 46 i 
Temp. Viscosity 
OC ( pois es ) - 
114 3 
1157 
1177 
1209 
1227 
1237 
12 54 
1266 
1278 

2100 
169 
1335 

905 
570 
4 50 
275 
235 
190 

Glass Batch No. 50 

OC (poises ) 
V i s  cos it y Temp. 

- 
1009 3000 
1040 lo00 
1067 320 
1078 205 
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E91037 3- 4 

Glass Batch No. 52 
Temp. Viscosity 

C (poises) 
0 - 

1034 4500 
1039 2700 
10 50 1760 
1072 910 
1083 180 

Glass Batch No. 65 
Temp. V i s  cos i t y  
- OC (poises ) 

l-3-73 2900 
1185 2100 
1197 1745 
1211 1420 
1226 1075 
1242 745 
1248 650 
1268 36 5 
1277 275 
1289 235 
1315 205 

TABLE IV (Contd. ) 

G l a s s  Batch No. 63-2 
Temp. Viscosity 

C (poises ) 0 - 
1157 2600 
1170 2060 
1193 1500 
1223 900 
1231 725 
1248 520 
1268 330 
1287 235 
1310 200 

Glass Batch No. 64 
T o w  
- C (poises ) 

V i s  cos it y 

1207 

12 50 
1228 

1265 
1276 
1299 
1326 
1340 

2300 
16 30 
1030 

82 5 
615 
365 
210 
190 

34 



TABU V 

Batch - 
1 1 

24 , 

25 

31 

32 

41 

43 

45 

Summary of Experimental Viscosity Determinations 

Temperature at Which Temperature at Which 
Viscosity is Approximately Viscosity is Approximately 

Batch 300 Poises - 300 Poises 

1305 46 12 54 

1450 48 1110 

1470 49 1087 

1342 50 1067 

1455 

92 5 

52 

63-2 

1088 

1269 

1060 64 1326 

1170 65 1267 
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E91037 3-4 

TABLE V I 1  

Typical Variation i n  Young's Modulus A s  Determined 
Dynamically f r o m  Several Samples of A Given Glass 

1 Specimen 

, 
Batch 30 - #1 

Batch 30 - #2 

Batch 30 - #3 

Batch 30 - #4 

Batch 30 - #5 

Batch 30 - #6 

Batch 30 - #" 

Batch 30 - #@ 

Young's Modulus 
(pounds/in2 x lo6) 

10.15 

10.18 

10.17 

10.0 

10.38 

10.35 

9.94 

10.23 

Specimen 

Batch 30 - # 9 

Batch 30 - #10 

Batch 30 - #11 
Batch 30 - #12 

Batch 3l  - # 1 

Batch 31 - # 2 

Batch 31 - # 3 

Batch 31 - # 4 

Young's Modulus 
(pounds/in2 X lo6) 

10.05 

10.17 

10.38 

10.38 

11- 55 

11.45 

11.87 

11.25 
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TABLE VI11 

Comparative Results of Sonic and Transverse Rupture Determinations of 
Young's !..Iodulus f o r  Glass #l 

Specimen 

1 

2 

3 

4 

5 

6 

7 

9 

10 

11 

Average 

Average Deviation 

Sonic Modulus Transverse Rupture Value 
(pounds/in2 x 106) (pounds/in2 x lo6) 

14.5 13.79 

14.8 14 . 50 
15.1 14 -06 

15.2 

14.55 

15.38 

14 . 58 
15.0 

14.4 

15.36 

14.89 

13.55 

13.81 

13.76 

13.20 

14.50 

13.94 

+ 0.32 + 0.32 - - 
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TABLE IXA 

Ca;Lculations of Young' s Modulus for  Owens- 
Corning Experimental Glass OCX-2124 (Ref .  49) 

Mole 
Constituent W t .  $ Mole W t .  Fraction Mole $ Kilobars/Mole $ Contribution 

Si02 71.1 60.06 1.185 70.0 7.3 511 

A1203 21.5 101.94 0.211 12.5 12.1 151 

Be0 7.4 25.02 0.296 17.4 X 17.4X 

662 + 17.4X 

B u t  Owens-Corning ( R e f .  10) achieved 14.4 x 10 6 p s i  or 992 kilobars 

.'. Be0 factor  = 992 - 662 = 19.0 kilobars/mole $ 
17.4 
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TABLE IXB 

Constituent 

Si02 

CaO 

Mgo 

Be0 

zf12 

Ti02 

Li20 

ceo, 

*See Table X 

Calculation of Young's Modulus fo r  Example 4, 
U. S. Patent 3,127,277 (Ref. 5 0 )  

w t .  $ Mol@ w t .  

5 1  60.06 

13 56.08 

9 40.32 

11 25.02 

2 123.22 

8 79 90 

3 29.88 

3 172.13 

Mole 
Fraction Mole $ 

0.850 42.5 

0.232 11.6 

0.223 11.1 

0.440 22.0 

0.016 0.8 

0.100 5.0 

0.100 5.0 

0.018 0.9 

Kilobars/Mole '$ Contribution 

7.3 310 

12.6 146 

12.0 133 

X 22x 

28.6* 23 

13.3 66.5 

7.0 35 

13.0 12 
725.5 + 22x 

But Owens-Co:rning achieved 16.6 x 10 6 p s i  o r  1144 kilobars 

.*. 5380 fac tor  = 1144 - 725.5 = 19.0 kilobars/mole $ 
22 
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1 
Calculation of Young’s Modulus fo r  Loewenstein’s Glass Z1 

Mol e 
Constituent W t .  $ Mole W t .  Fraction Mole ’$ Kilobars/Mole ’$ - Contribution 

I 

S i02 50 .O 60.06 0 . 833 50 7.3 365 

A1203 5.0 101.94 0.049 2.93 12.1 35.4 

Zr02 12 .o 123.22 0 .og7 5.82 Y 5 .82~  

M g O  14 .O 40.32 0 . 347 20.82 12  .o 2 50 

CaO 19 .O 56.08 0 339 20.83 12.6 256 

912.2 + 5,8211 

1 
But 21 (exp. value) = 11 x lo5  kg/cm2 = 1078 ki lobars  

? t  Zr02 = - 166 = 28.6 kilobars/mole $ 
5.82 
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TABLE X 

1 

Melt - 
1 
2 

4 
14 
1 5  
18 
21 
22 

23 
24 
26 
27 
28 
29 
30 
31 
36 

37 

39 
41 

42 
43 
44 
45 
46 
46B 
47 

Evaluation of G l a s s  Making Character is t ics  and 
F ibe r i zab i l i t y  o f  Some of t h e  

Experimental Compositions 

Pouring 
Temp. 
(OC) Quality of Glass 

Fiberizing 
Character is t ics  

---- 
1576 

1582 

1576 
1588 

1202 
---- 

Optical 
UP t o  1600 c 

no evidence of melting 
Optical 
Optical 

Optical, water white 
Glassy only i n  center  
Optical, water white 

Cinders o n l y  
(no apparent melting) 
No evidence of melting 

Good 
Optical  - l i g h t  green color  
Optical  - l i g h t  blue color 

Optical - amber color  
Crystall ine m a s s  

Optical - l i g h t  greeii color 
Optical - l i g h t  blue color 

Could form o n l y  a 
f e w  glass specks 

Optical 

Optical - lemon color 
Optical 

O p t i c a l  
Good 
Good 

Optical 
Good 
Good 
Good 

Not evaluated 
---- 

Not evaluated 
Not evaluated 
Not evaluated 
Not evaluated 
Not evaluated 

---- 

Not evaluated 
Not evaluated 
Not evaluated 
Not evaluat ed 

Excellent 
Not evaluated 
Not evaluat ed 
Not evaluated 

Could not f i be r i ze  

Fiber has inclusions 
and is  b r i t t l e  

Excellent 
Excellent, 

glass very f lu id  
Excellent 

Not evaluated 
Not evaluated 

Excellent 
Not evaluated 
Not evaluated 
Not evaluated 
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TABLE X (Contd. ) 

Melt - 
4 8 ~  
50 

t 51 
52 
53 
54B 
55 
56 
59 
60 
61 
62 
63 

64 
65 

66 
67 
68 
70 
71 
72 
74 
75 

Pouring 
Temp. 
(OC) 

1600 
1566 

Quality of Glass 

Good 
Optical - l i g h t  amber 

Good glass i n  center  
Good 
Good 
Poor 

Optical 
Water white op t ica l  

Optical 
Optical 
Optical 

Optical - amber color 
---- 

Optical 
---- 

Optical 
Optical 
Optical 

Optical 
Good 
Good 
Good 

Optical  - water white 

Fiberizing 
Character is t ics  

---- 
Not readi ly  f iber ized 

Excellent 
Excellent 
Too fluid 
Too f l u i d  
Excellent 

Exc ept iona l ly  well  
Will not pour at t h i s  
temperature 

W i l l  not pour at t h i s  
temperature 

Excellent 

Not evaluated 
Not evaluated 

Fine f i be r i za t  ion 
& c e l l  ent 

Not evaluat ed 
Not evaluated 
Not evaluated 

---- 
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MELTING OXIDE MIXTURES 

FIG.  I 
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FIG. 2 

TUNGSTEN CRUCIBLE CONDUCTIVITY CELL 



E9 IO373 -4 FIG.3 

HIGH TEMPERATURE TUNGSTEN RESISTANCE FURNACE 

@TUNGSTEN PEDESTAL FOR CRUCIBLE 
@TUNGSTEN CRUCIBLE 
@FLAT TUNGSTEN HEATING ELEMENT (4) 
@TANTALUM RADIATION SHIELDS 
@SIDE COPPER COOLING COILS 
@TOP WATER COOLED ELECTRODE 

I SUPPORT PIN FOR TANTALUM SHIELDS 
8 TO VACUUM SYSTEM , 8 S '0' RING GASKET SEALS 

@TOP COPPER COOLING COILS 
@ TOP INTERCHANGABLE COVER FOR 

@ SIGHT GLASS 

SUPPORT CONDUCTOR 

MEASURING APPARATUS 

@ PROTECTOR MECHANISM FOR SIGHT GLASS 
14 TOP TANTALUM RAMATION SHIELDS 
I5 COOLING WATER I N  
16 COOLING WATER OUT 
@ BOTTOM WATER COOLED ELECTRODE 

@ BOTTOM PLATE FOR MOUNTING 
1s WATER IN BOTTOM ELECTRODE 
1 BOTTOM COPPER COOLING COILS 
21 BOTTOM TANTALUM RADIATION SHIELDS 
22 BOTTOM INTERCHANGABLE COVER FOR w MEASURING APPARATUS 
@ WATER IN TOP ELECT- 

SUPPORT CONDUCTOR 

8 
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€910373- 4 FIG. 5 

LARGE TUNGSTEN SPINDLE USED FOR HIGH 
TEMPERATURE VISCOSITY MEASUREMENT 

BROOKFIELD VISCOMETER MODEL RVT 

CONTAINER DIAMETER: 2" 

MINIMUM CONTAINER DEPTH: 2" 

SPEED (R.PM.1 RANGE (CPS) 

I O 0  0 - 3000 
5 0  5000 

2 0  15,000 

I O  

5 

2 .5  

I 

0.5 

30,000 

60,000 

I 2 0,o 00 

150,000 

600,000 
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E 910373-4 FIG.6 

BROOKFIELD VISCOMETER AND CONSTANT TEMPERATURE 
B A T H  U S E D  FOR C A L I B R A T I O N  
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FIG. 9 E910373-4 

BROOKFIELD VISCOMETER INSTALLED ON 
FOR HIGH TEMPERATURE VISCOSITY 

TUNGSTEN FURNACE 
M E A S U R E M E N T S  
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EXPERIMENTALLY DETERMINED VISCOSITY-TEMPERATURE RELATIONS 
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:9103?3 - 4  FIG.11 

IXPERIMENTAUY DETERMINED VISCOSITY-TEMPERATURE RELAfiONS 
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E910373 - 4 FIG. 12 

EXPERIMENTALLY DETERMINED VI SCOSITY-TEMPERATURE RELATIONS 
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E 910373- 4 FIG. 13 

EXPERIMENTALLY DETERMINED V ISCOSITY-TEMPERATURE RELATIONS 
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EXPERIMENTALLY DETERMINED V ISCOSITY-TEMPERATURE RELATIONS 

2000 

1800 

1600 

I400 

I200 
CI 

m 
w 

0 
v, 

5 1000 

k 
> 

v) 

m 
E 
3 800 

600 

400 

200 

0 I I I I I I 
1050 1100 1150 1200 1250 I300 I350 1400 

TEMP - *C 

57 



E 910373-4 

3 
0 > 
LL 
0 
I- 

a 

I- z 
w 

w 

FIG. 15 



E-910374 4 FIG. I6 

LL 
0 

W 
I 
I- 

o 

a 

i- 
W 
n 

a 

a 

E: 

W 

3 

r ----- -I--1 

59 



€910373-4 

0 
SLL 
0 

a a >  

a 

~~ 

FIG. I f  

60 



E 91 0373 - 4 

PLATFORM KILN 

FIG.18 
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